3.197 \(\int \csc ^3(c+b x) \sin (a+b x) \, dx\)

Optimal. Leaf size=39 \[ -\frac{\cos (a-c) \cot (b x+c)}{b}-\frac{\sin (a-c) \csc ^2(b x+c)}{2 b} \]

[Out]

-((Cos[a - c]*Cot[c + b*x])/b) - (Csc[c + b*x]^2*Sin[a - c])/(2*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0437446, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {4582, 2606, 30, 3767, 8} \[ -\frac{\cos (a-c) \cot (b x+c)}{b}-\frac{\sin (a-c) \csc ^2(b x+c)}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[Csc[c + b*x]^3*Sin[a + b*x],x]

[Out]

-((Cos[a - c]*Cot[c + b*x])/b) - (Csc[c + b*x]^2*Sin[a - c])/(2*b)

Rule 4582

Int[Csc[w_]^(n_.)*Sin[v_], x_Symbol] :> Dist[Sin[v - w], Int[Cot[w]*Csc[w]^(n - 1), x], x] + Dist[Cos[v - w],
Int[Csc[w]^(n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \csc ^3(c+b x) \sin (a+b x) \, dx &=\cos (a-c) \int \csc ^2(c+b x) \, dx+\sin (a-c) \int \cot (c+b x) \csc ^2(c+b x) \, dx\\ &=-\frac{\cos (a-c) \operatorname{Subst}(\int 1 \, dx,x,\cot (c+b x))}{b}-\frac{\sin (a-c) \operatorname{Subst}(\int x \, dx,x,\csc (c+b x))}{b}\\ &=-\frac{\cos (a-c) \cot (c+b x)}{b}-\frac{\csc ^2(c+b x) \sin (a-c)}{2 b}\\ \end{align*}

Mathematica [A]  time = 0.190225, size = 35, normalized size = 0.9 \[ \frac{\csc (c) \csc ^2(b x+c) (\cos (a)-\cos (a-c) \cos (2 b x+c))}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[c + b*x]^3*Sin[a + b*x],x]

[Out]

((Cos[a] - Cos[a - c]*Cos[c + 2*b*x])*Csc[c]*Csc[c + b*x]^2)/(2*b)

________________________________________________________________________________________

Maple [B]  time = 0.602, size = 120, normalized size = 3.1 \begin{align*}{\frac{1}{b} \left ( -{\frac{1}{ \left ( \cos \left ( a \right ) \cos \left ( c \right ) +\sin \left ( a \right ) \sin \left ( c \right ) \right ) ^{2} \left ( \tan \left ( bx+a \right ) \cos \left ( a \right ) \cos \left ( c \right ) +\tan \left ( bx+a \right ) \sin \left ( a \right ) \sin \left ( c \right ) +\cos \left ( a \right ) \sin \left ( c \right ) -\sin \left ( a \right ) \cos \left ( c \right ) \right ) }}-{\frac{\sin \left ( a \right ) \cos \left ( c \right ) -\cos \left ( a \right ) \sin \left ( c \right ) }{2\, \left ( \cos \left ( a \right ) \cos \left ( c \right ) +\sin \left ( a \right ) \sin \left ( c \right ) \right ) ^{2} \left ( \tan \left ( bx+a \right ) \cos \left ( a \right ) \cos \left ( c \right ) +\tan \left ( bx+a \right ) \sin \left ( a \right ) \sin \left ( c \right ) +\cos \left ( a \right ) \sin \left ( c \right ) -\sin \left ( a \right ) \cos \left ( c \right ) \right ) ^{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+c)^3*sin(b*x+a),x)

[Out]

1/b*(-1/(cos(a)*cos(c)+sin(a)*sin(c))^2/(tan(b*x+a)*cos(a)*cos(c)+tan(b*x+a)*sin(a)*sin(c)+cos(a)*sin(c)-sin(a
)*cos(c))-1/2*(sin(a)*cos(c)-cos(a)*sin(c))/(cos(a)*cos(c)+sin(a)*sin(c))^2/(tan(b*x+a)*cos(a)*cos(c)+tan(b*x+
a)*sin(a)*sin(c)+cos(a)*sin(c)-sin(a)*cos(c))^2)

________________________________________________________________________________________

Maxima [B]  time = 1.19331, size = 539, normalized size = 13.82 \begin{align*} \frac{{\left (2 \, \sin \left (2 \, b x + 2 \, a + 2 \, c\right ) - \sin \left (2 \, a\right ) - \sin \left (2 \, c\right )\right )} \cos \left (4 \, b x + a + 5 \, c\right ) - 2 \,{\left (2 \, \sin \left (2 \, b x + 2 \, a + 2 \, c\right ) - \sin \left (2 \, a\right ) - \sin \left (2 \, c\right )\right )} \cos \left (2 \, b x + a + 3 \, c\right ) -{\left (\sin \left (2 \, a\right ) + \sin \left (2 \, c\right )\right )} \cos \left (a + c\right ) -{\left (2 \, \cos \left (2 \, b x + 2 \, a + 2 \, c\right ) - \cos \left (2 \, a\right ) - \cos \left (2 \, c\right )\right )} \sin \left (4 \, b x + a + 5 \, c\right ) + 2 \, \cos \left (a + c\right ) \sin \left (2 \, b x + 2 \, a + 2 \, c\right ) + 2 \,{\left (2 \, \cos \left (2 \, b x + 2 \, a + 2 \, c\right ) - \cos \left (2 \, a\right ) - \cos \left (2 \, c\right )\right )} \sin \left (2 \, b x + a + 3 \, c\right ) +{\left (\cos \left (2 \, a\right ) + \cos \left (2 \, c\right )\right )} \sin \left (a + c\right ) - 2 \, \cos \left (2 \, b x + 2 \, a + 2 \, c\right ) \sin \left (a + c\right )}{b \cos \left (4 \, b x + a + 5 \, c\right )^{2} + 4 \, b \cos \left (2 \, b x + a + 3 \, c\right )^{2} - 4 \, b \cos \left (2 \, b x + a + 3 \, c\right ) \cos \left (a + c\right ) + b \cos \left (a + c\right )^{2} + b \sin \left (4 \, b x + a + 5 \, c\right )^{2} + 4 \, b \sin \left (2 \, b x + a + 3 \, c\right )^{2} - 4 \, b \sin \left (2 \, b x + a + 3 \, c\right ) \sin \left (a + c\right ) + b \sin \left (a + c\right )^{2} - 2 \,{\left (2 \, b \cos \left (2 \, b x + a + 3 \, c\right ) - b \cos \left (a + c\right )\right )} \cos \left (4 \, b x + a + 5 \, c\right ) - 2 \,{\left (2 \, b \sin \left (2 \, b x + a + 3 \, c\right ) - b \sin \left (a + c\right )\right )} \sin \left (4 \, b x + a + 5 \, c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+c)^3*sin(b*x+a),x, algorithm="maxima")

[Out]

((2*sin(2*b*x + 2*a + 2*c) - sin(2*a) - sin(2*c))*cos(4*b*x + a + 5*c) - 2*(2*sin(2*b*x + 2*a + 2*c) - sin(2*a
) - sin(2*c))*cos(2*b*x + a + 3*c) - (sin(2*a) + sin(2*c))*cos(a + c) - (2*cos(2*b*x + 2*a + 2*c) - cos(2*a) -
 cos(2*c))*sin(4*b*x + a + 5*c) + 2*cos(a + c)*sin(2*b*x + 2*a + 2*c) + 2*(2*cos(2*b*x + 2*a + 2*c) - cos(2*a)
 - cos(2*c))*sin(2*b*x + a + 3*c) + (cos(2*a) + cos(2*c))*sin(a + c) - 2*cos(2*b*x + 2*a + 2*c)*sin(a + c))/(b
*cos(4*b*x + a + 5*c)^2 + 4*b*cos(2*b*x + a + 3*c)^2 - 4*b*cos(2*b*x + a + 3*c)*cos(a + c) + b*cos(a + c)^2 +
b*sin(4*b*x + a + 5*c)^2 + 4*b*sin(2*b*x + a + 3*c)^2 - 4*b*sin(2*b*x + a + 3*c)*sin(a + c) + b*sin(a + c)^2 -
 2*(2*b*cos(2*b*x + a + 3*c) - b*cos(a + c))*cos(4*b*x + a + 5*c) - 2*(2*b*sin(2*b*x + a + 3*c) - b*sin(a + c)
)*sin(4*b*x + a + 5*c))

________________________________________________________________________________________

Fricas [A]  time = 0.469974, size = 113, normalized size = 2.9 \begin{align*} \frac{2 \, \cos \left (b x + c\right ) \cos \left (-a + c\right ) \sin \left (b x + c\right ) - \sin \left (-a + c\right )}{2 \,{\left (b \cos \left (b x + c\right )^{2} - b\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+c)^3*sin(b*x+a),x, algorithm="fricas")

[Out]

1/2*(2*cos(b*x + c)*cos(-a + c)*sin(b*x + c) - sin(-a + c))/(b*cos(b*x + c)^2 - b)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+c)**3*sin(b*x+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.17347, size = 196, normalized size = 5.03 \begin{align*} -\frac{\tan \left (b x + c\right ) \tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right )^{2} - \tan \left (b x + c\right ) \tan \left (\frac{1}{2} \, a\right )^{2} + 4 \, \tan \left (b x + c\right ) \tan \left (\frac{1}{2} \, a\right ) \tan \left (\frac{1}{2} \, c\right ) + \tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right ) - \tan \left (b x + c\right ) \tan \left (\frac{1}{2} \, c\right )^{2} - \tan \left (\frac{1}{2} \, a\right ) \tan \left (\frac{1}{2} \, c\right )^{2} + \tan \left (b x + c\right ) + \tan \left (\frac{1}{2} \, a\right ) - \tan \left (\frac{1}{2} \, c\right )}{{\left (\tan \left (\frac{1}{2} \, a\right )^{2} \tan \left (\frac{1}{2} \, c\right )^{2} + \tan \left (\frac{1}{2} \, a\right )^{2} + \tan \left (\frac{1}{2} \, c\right )^{2} + 1\right )} b \tan \left (b x + c\right )^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+c)^3*sin(b*x+a),x, algorithm="giac")

[Out]

-(tan(b*x + c)*tan(1/2*a)^2*tan(1/2*c)^2 - tan(b*x + c)*tan(1/2*a)^2 + 4*tan(b*x + c)*tan(1/2*a)*tan(1/2*c) +
tan(1/2*a)^2*tan(1/2*c) - tan(b*x + c)*tan(1/2*c)^2 - tan(1/2*a)*tan(1/2*c)^2 + tan(b*x + c) + tan(1/2*a) - ta
n(1/2*c))/((tan(1/2*a)^2*tan(1/2*c)^2 + tan(1/2*a)^2 + tan(1/2*c)^2 + 1)*b*tan(b*x + c)^2)